128 research outputs found

    Studies on the Energy Band Discontinuities in SnS/ZnMgO Thin Film Heterojunction

    Get PDF
    AbstractTin sulfide (SnS), with a direct energy band gap of 1.3eV and high absorption coefficient >104cm-1 is a promising candidate for application as an absorber material for solar cell fabrication. Although several research groups have fabricated SnS-related solar cells, the reported efficiencies were low (< 3.0%). One of the reasons for this low efficiency is the mismatch at the band edges in the heterojunction. In the present work, SnS films have been synthesized by sulfurization of Sn layers deposited by evaporation and RF sputtering onto SnO2 coated glass. The structural properties of the layers were discussed. All RF sputtered Zn0.8Mg0.2O (ZMO) and ZnO:Ga were coated on SnS as buffer and window layers respectively. The band offsets at the SnO2/SnS and ZMO/SnS heterojunctions were evaluated using X-ray photoelectron spectroscopy measurements. The conduction band (ΔEc) and valence band (ΔEv) discontinuities were determined as approximately 1.0eV and 3.5eV for SnO2/SnS and 0.4eV and 1.7eV for ZMO/SnS junction. The related energy band diagram was constructed and the results discussed

    Biomaterial strategies for alleviation of myocardial infarction

    Get PDF
    World Health Organization estimated that heart failure initiated by coronary artery disease and myocardial infarction (MI) leads to 29 per cent of deaths worldwide. Heart failure is one of the leading causes of death in industrialized countries and is expected to become a global epidemic within the twenty-first century. MI, the main cause of heart failure, leads to a loss of cardiac tissue impairment of left ventricular function. The damaged left ventricle undergoes progressive ‘remodelling’ and chamber dilation, with myocyte slippage and fibroblast proliferation. Repair of diseased myocardium with in vitro-engineered cardiac muscle patch/injectable biopolymers with cells may become a viable option for heart failure patients. These events reflect an apparent lack of effective intrinsic mechanism for myocardial repair and regeneration. Motivated by the desire to develop minimally invasive procedures, the last 10 years observed growing efforts to develop injectable biomaterials with and without cells to treat cardiac failure. Biomaterials evaluated include alginate, fibrin, collagen, chitosan, self-assembling peptides, biopolymers and a range of synthetic hydrogels. The ultimate goal in therapeutic cardiac tissue engineering is to generate biocompatible, non-immunogenic heart muscle with morphological and functional properties similar to natural myocardium to repair MI. This review summarizes the properties of biomaterial substrates having sufficient mechanical stability, which stimulates the native collagen fibril structure for differentiating pluripotent stem cells and mesenchymal stem cells into cardiomyocytes for cardiac tissue engineering

    Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Cucumber, <it>Cucumis sativus </it>L. (2n = 2 × = 14) and melon, <it>C. melo </it>L. (2n = 2 × = 24) are two important vegetable species in the genus <it>Cucumis </it>(family Cucurbitaceae). Both species have an Asian origin that diverged approximately nine million years ago. Cucumber is believed to have evolved from melon through chromosome fusion, but the details of this process are largely unknown. In this study, comparative genetic mapping between cucumber and melon was conducted to examine syntenic relationships of their chromosomes.</p> <p>Results</p> <p>Using two melon mapping populations, 154 and 127 cucumber SSR markers were added onto previously reported F<sub>2</sub>- and RIL-based genetic maps, respectively. A consensus melon linkage map was developed through map integration, which contained 401 co-dominant markers in 12 linkage groups including 199 markers derived from the cucumber genome. Syntenic relationships between melon and cucumber chromosomes were inferred based on associations between markers on the consensus melon map and cucumber draft genome scaffolds. It was determined that cucumber Chromosome 7 was syntenic to melon Chromosome I. Cucumber Chromosomes 2 and 6 each contained genomic regions that were syntenic with melon chromosomes III+V+XI and III+VIII+XI, respectively. Likewise, cucumber Chromosomes 1, 3, 4, and 5 each was syntenic with genomic regions of two melon chromosomes previously designated as II+XII, IV+VI, VII+VIII, and IX+X, respectively. However, the marker orders in several syntenic blocks on these consensus linkage maps were not co-linear suggesting that more complicated structural changes beyond simple chromosome fusion events have occurred during the evolution of cucumber.</p> <p>Conclusions</p> <p>Comparative mapping conducted herein supported the hypothesis that cucumber chromosomes may be the result of chromosome fusion from a 24-chromosome progenitor species. Except for a possible inversion, cucumber Chromosome 7 has largely remained intact in the past nine million years since its divergence from melon. Meanwhile, many structural changes may have occurred during the evolution of the remaining six cucumber chromosomes. Further characterization of the genomic nature of <it>Cucumis </it>species closely related to cucumber and melon might provide a better understanding of the evolutionary history leading to modern cucumber.</p

    Iron Behaving Badly: Inappropriate Iron Chelation as a Major Contributor to the Aetiology of Vascular and Other Progressive Inflammatory and Degenerative Diseases

    Get PDF
    The production of peroxide and superoxide is an inevitable consequence of aerobic metabolism, and while these particular "reactive oxygen species" (ROSs) can exhibit a number of biological effects, they are not of themselves excessively reactive and thus they are not especially damaging at physiological concentrations. However, their reactions with poorly liganded iron species can lead to the catalytic production of the very reactive and dangerous hydroxyl radical, which is exceptionally damaging, and a major cause of chronic inflammation. We review the considerable and wide-ranging evidence for the involvement of this combination of (su)peroxide and poorly liganded iron in a large number of physiological and indeed pathological processes and inflammatory disorders, especially those involving the progressive degradation of cellular and organismal performance. These diseases share a great many similarities and thus might be considered to have a common cause (i.e. iron-catalysed free radical and especially hydroxyl radical generation). The studies reviewed include those focused on a series of cardiovascular, metabolic and neurological diseases, where iron can be found at the sites of plaques and lesions, as well as studies showing the significance of iron to aging and longevity. The effective chelation of iron by natural or synthetic ligands is thus of major physiological (and potentially therapeutic) importance. As systems properties, we need to recognise that physiological observables have multiple molecular causes, and studying them in isolation leads to inconsistent patterns of apparent causality when it is the simultaneous combination of multiple factors that is responsible. This explains, for instance, the decidedly mixed effects of antioxidants that have been observed, etc...Comment: 159 pages, including 9 Figs and 2184 reference

    Synthesis of highly substituted tetrahydropyrans: preparation of the C20-C28 moiety of phorboxazoles

    No full text
    A propionate-derived polyketide building block A whose 2-methyl-1,3-diol moiety was built by a Ti(III)-mediated ring opening reaction of a trisubstituted 2,3-epoxy alcohol precursor was employed as a common starting material for the syntheses of highly substituted tetrahydropyrans 1-5, the first one being the C20-C28 fragment of cytotoxic natural products, phorboxazoles

    Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis

    No full text
    In the present study, iron doped zinc oxide (ZnO:Fe) thin films were prepared by using a simple chemical spray pyrolysis technique by varying the doping concentration in the range, 0–6 at.% at a constant substrate temperature of 400 °C.The effect of Fe-doping concentration on the physical behavior of ZnO thin films were analyzed and discussed. The X-ray diffraction (XRD) patterns exhibited hexagonal wurtzite crystal structure without any secondary phases for all the films irrespective of the doping concentration. However, the preferential orientation changed from (002) to (101) plane with increase of Fe-doping. The Raman spectroscopy studies showed the peaks at 338 cm-1, 438 cm-1 and 574 cm-1 which are the characteristic vibrational modes of ZnO. The scanning electron microscopic (SEM) images showed irregular shaped grains grown over the substrate surface. The X-ray photoelectron spectroscopy (XPS) studies confirmed the presence of Fe in +3 state in ZnO layers. The Fourier transform infrared (FTIR) spectroscopy data revealed the presence of iron in the doped ZnO films by showing the modes related to iron in addition to ZnO. The optical properties revealed that the films with lower Fe-doping concentration (≤ 2 at.%) showed high transmittance and wide band gap than the pure and highly Fe-doped ZnO films. The evaluated band gap showed a red shift upon doping with the energy band gap decreased from 3.24 eV to 3.01 eV for the investigated doping concentration range. The photoluminescence spectra also showed similar optical behavior with quenching of PL signal intensity of the films. Moreover, all the Fe-doped ZnO films showed ferromagnetic behavior at room temperature
    corecore